An Introduction to Shock

SAEM Undergraduate Medical Education Committee Emergency Medicine Clerkship Lecture Series

Primary Author: Julie K. A. Kasarjian, MD, PhD

Reviewer: Joshua Wallenstein, MD

Learning Objectives

- Review the approach to different types of shock states
- Review the principles of different shock states
 - Septic
 - Cardiogenic
 - Anaphylactic

- 83 year old man presents with an altered mental status from a local nursing home
- PMH: HTN, prostate CA, chronic UTI's, CAD
- Medications: ASA daily, NTG prn, norvasc, HCTZ, colace
- NKDA

Physical exam:

- VS: BP 86/40mmHg HR 115 RR 24 T
 98.0°F SaO₂ 97% RA
- HEENT: Edentulous
- Heart: Regular rhythm, tachycardic, 2/6 systolic murmur
- Lungs: Clear, tachypneic
- Abdomen: Soft, non-distended, + bowel sounds

Physical exam:

- Extremities: diminished pulses, no edema
- Skin: warm
- Neurologic: oriented to name, moves all extremities, GCS 14

- Describe your initial management?
 - What needs to be done with this patient in the first 5 minutes?

IV, O2, Monitor, ABC's

2 large bore IV lines (14 or 16 ga)
Aggressive fluid resuscitation with
NS

Supplemental O₂
Cardiac monitoring

 Based on your clinical suspicion, what laboratory studies are indicated?

What imaging studies?

Sepsis - Definition

- Heterogeneous clinical syndrome caused by infection with any class of microorganism
 - Gram-negative: 55-60%
 - Gram-positive: 35-40%

Sepsis - Clinical Features

- Hypo-/hyperthermia
- Tachycardia-/Tachypnea
- Altered mental status
- Decreased capillary refill/mottling >2 seconds

Sepsis - Diagnostic Features

- Hyperglycemia
- Leukocytosis-/leukopenia
- Hyperlactemia

Severe Sepsis

- Sepsis with either hypotension or systemic manifestations of hypoperfusion
 - Lactic acidosis
 - Oliguria
 - Altered mental status

Septic Shock

 Sepsis associated with hypotension and or findings of end organ hypoperfusion

Characteristics of Septic Shock

- Systemic vasodilation and hypotension
- Tachycardia; depressed contractility
- Vascular leakage and edema leading to relative hypovolemia
- Compromised blood flow to vital organs
- Disseminated intravascular coagulation
- Metabolic acidosis
- Respiratory insufficiency and multiple organ failure

Systemic Inflammatory Response Syndrome (SIRS)

- Two or more of the following conditions
 - Temperature >38°C or <36°C</p>
 - Heart rate > 90 beats/min
 - Respiratory rate >20 breaths/min
 - PaCO2, <32 mmHg
 - WBC >12,000 mm³ or <4000, or >10% immature (band) cells

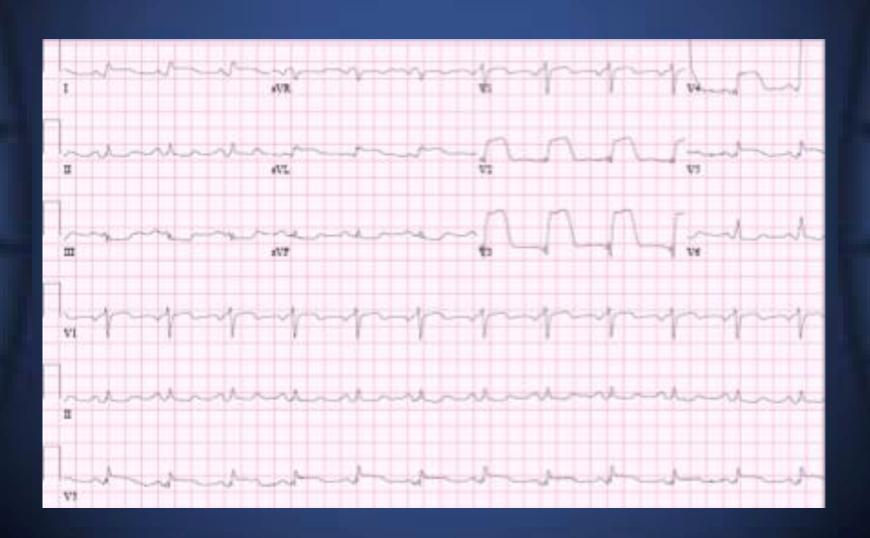
Multiple Organ Dysfunction Syndrome (MODS)

Progressive organ failure following severe infectious or noninfectious insults (severe burns, multiple trauma)

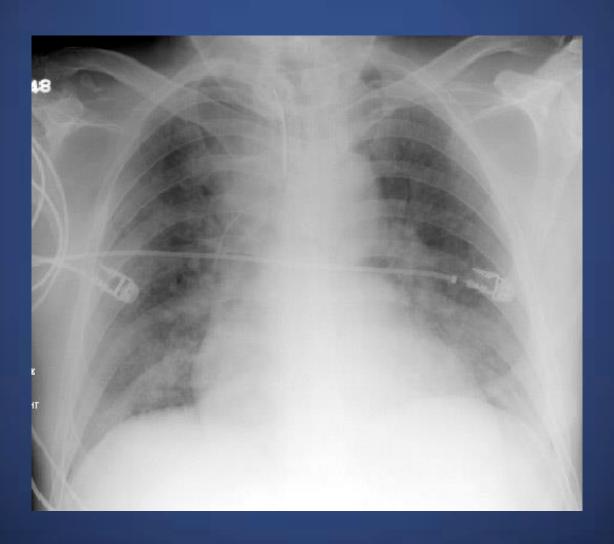
Sepsis - Treatment

- Insure Adequate oxygenation and ventilation to limit work of breathing
- Aggressive IV fluid resuscitation (crystalloid)
- Antibiotic therapy
 - Empiric (after cultures)
 - Based on source/patient status (community,healthcare associated, immunocompromised)

Sepsis - Treatment


- ***Early goal directed therapy
- Vasopressor support if hypotensive despite IVF
 - Based on initial response to fluid resuscitation
- Blood product transfusion
- Tight glucose control (controversial)
- Steroids (controversial)
 - If hypotensive despite IVF/pressors

- A 62 year old female presents with progressive substernal chest pain, now with worsening shortness of breath
- PMH: Hypertension, CAD
- Meds: Clonidine, Lopressor, ASA
- Social: Smoker
- NKDA


Physical exam

- VS: BP 86/50 HR 86 RR 24
 37.0°F SaO₂ 96%
- General: restless
- Heart: regular rate, harsh SEM, tachycardic
- Lungs: rales, tachypneic
- Abdomen: obese, NT/ND
- Extremities: LE edema

ECG

Chest Radiograph

Cardiogenic Shock - Definition

- Insufficient cardiac output to meet metabolic demands of tissues
- Usually from acute myocardial infarction (AMI) >40% of LV myocardium
- Sustained hypotension with inadequate tissue perfusion in spite of adequate left ventricular filling pressure

Cardiogenic Shock

- Manifested by organ dysfunction such as oliguria, confusion, cool extremities and lactic acidosis
- Strict definitions:
 - Systolic BP of <90 mmHg for greater than 30 minutes
 - Cardiac index of <2.2L/min/m² in the presence of a pulmonary capillary wedge pressure of >15 mmHg

Cardiogenic Shock - Clinical Features

- Hypoperfusion
- Hypotension
 - SBP <90 mmHg, or</p>
 - MAP decrease by 30 mmHg
 - Pulse pressure <20 mmHg</p>
- Organ dysfunction including:
 - Oliguria, confusion, cool extremities and lactic acidosis

Cardiogenic Shock - Causes

Pump failure

Acute myocardial infarction (including RV)

Mechanical complications

- Acute valvular insufficiency
 - Acute mitral regurgitation
- Rupture of the interventricular septum
- Free wall rupture
- Tamponade

Other

- End stage cardiomyopathy
- Myocarditis
- Prolonged cardiopulmonary bypass
- LV outflow obstruction
- Aortic stenosis
- Obstruction to LV filling
- Mitral stenosis
- Acute aortic insufficiency

Initial Evaluation

- ABC's (primary survey)
- Careful history/physical exam
- Safety net
 - IV access, oxygen, cardiac monitoring
- 12-lead ECG
- CXR
- Labs:
 - CBC, CMP, coags, cardiac markers, BNP, etc.

Cardiogenic Shock - Management

- Will depend on suspected etiology
- Early cardiology involvement
- Bedside echocardiogram
- Invasive monitoring
- Diagnostic/therapeutic cardiac catheterization
- IABP
- Emergent CABG

Echocardiogram

- Can guide treatment by identifying any wall motion abnormalities
- Rapid diagnosis of mechanical causes of cardiogenic shock
 - Papillary muscle rupture
 - Acute mitral regurgitation
 - Acute VSD
 - Free wall rupture
 - Tamponade

- 24 year old male, unrestrained driver, high speed MVA
- Complains of severe abdominal pain at the scene
- SBP 90 mmHg HR 118 RR 26
- GCS 14, responds to verbal stimuli
- Abdominal tenderness with guarding

CT Scan Abdomen

Hemorrhagic Shock

Class	I	II	III	IV
Blood Loss (ml)	<750	750-1,500	1,500- 2,000	>2,000
Blood Loss (%)	<15%	15-30%	30-40%	>40%
HR	<100/min	>100	>120	>140
BP	Normal	☐ Pulse Pressure	□SBP	□□ SBP
Need for Transfusion	No	No	Most	All

Hypovolemic Shock

- Ensure adequate ventilation/oxygenation
- Control hemorrhage
- Aggressive IV fluids
- Consider pRBC transfusion
- Treat severe acidosis
- Correct underlying cause early
 - Surgical hemorrhage control

Hypovolemic Shock

- FAST scan
 - To OR directly versus CT scan/other imaging

 32 year old male presenting with acute onset shortness of breath/wheezing, pruritic rash, vomiting after eating shellfish

Anaphylactic Shock

- Widespread hypersensitivity
- Vasodilatation leads to:
 - Hypovolemia, altered cellular metabolism
- Histamine release leads to:
 - Increased permeability and massive vasodilatation
- Respiratory distress with bronchospasm and laryngospasm

Anaphylactic Shock

- Up to 2/3 of cases offending agent not identified
- Food most common identified cause
- Venom, medications, exercise, and latex are other causes

Anaphylaxis/Allergic Reactions

- Sensitization to:
 - Drugs (penicillin, sulfa)
 - Foods (shellfish, nuts, eggs, preservatives, tetrazine dyes)
 - Stings (hymenoptera)
- No sensitizing exposure:
 - Dextran, codeine, radiocontrast material

Anaphylactic Shock - Treatment

- Control airway and ventilation
- Crystalloid 10-20 mL/kg
- Epinephrine
- Diphenhydramine
- Steroids 5-10 mg/kg hydrocortisone or 1-2 mg/kg methylprednisilone
- H₂ blockers

Approach to Patient in Shock

 General approach to a patient in the initial stages of shock follows similar principles regardless of the inciting factors or etiology

Shock - Description

- Inadequate blood/oxygen supply to tissues
- Build up of toxic metabolites
- Physiologic responses cannot meet tissue demands

Physical Exam

- Hypotension and tachycardia
- Peripheral hypoperfusion
- Peripheral vasoconstriction (common)
- Altered mental status
- Oliguria or anuria
- Metabolic acidosis (common)

Criteria for Diagnosis - Shock

- III appearance or altered mental status
- HR >100 bpm
- RR >22 bpm or PaCO2 <32 mm Hg
- Arterial base deficit <-5 mEq/L or lactate >
- Urine output < 0.5mL/kg/hr</p>
- Arterial hypotension > 20 minutes
- ** four criteria should be met, regardless of cause

Cardiovascular

- Systemic vasodilation and hypotension (SBP <90 mmHg)
- Tachycardia (100 bpm)
- Increased cardiac output (hyperdynamic early, hypodynamic - late
- Ventricular dilation; decreased ejection fraction
- Loss of sympathetic responsiveness

Pulmonary and Renal

- Hyperventilation with respiratory alkalosis
- Pulmonary hypertension and edema
- Hypoxemia arterial Pa0₂<50 mmHg
- Reduced pulmonary compliance; increased work of breathing
- Respiratory muscle failure
- Renal hypoperfusion; oliguria
- Acute tubular necrosis and renal failure

Autonomic Response

- Arteriolar vasoconstriction redistribute blood from skin, skeletal muscle, kidneys, splanchnic viscera
- Increase heart rate and contractility
- Release of vasoactive hormones
 - epinephrine, norepinephrine, dopamine, cortisol
- Release of ADH and activation of reninangiotension-aldosterone system

Shock - Labs

- o DIC
- Leukopenia, thrombocytopenia, polycythemia
- Metabolic acidosis
- Increased lactate

Stages of Shock

- Early reversible/compensatory shock
 - Mean arterial pressure drops 10 -15 mm
 Hg
 - Decrease in circulating blood volume (25-35%) 1000ml
 - Sympathetic nervous system stimulated; release of catecholamines

Intermediate

- Further drop in MAP (20%)
- Increase in fluid loss (1,500-2,500 ml)
- Peripheral vasoconstriction
- Body switches to anaerobic metabolism forming lactic acid as a waste product

Intermediate

- Body increases heart rate and vasoconstriction
- Heart and brain become hypoxic
- More severe effects on other tissues which become: ischemic and anoxic
- State of acidosis/hyperkalemia develops
- Needs rapid treatment

Refractory

- Refractory or irreversible shock
- Tissues are anoxic, cellular death widespread
- Restoration of blood pressure and fluid volume may not restore homeostasis of tissues
- Cellular death leads to tissue death;
 vital organs fail and death occurs

Shock

Components of Blood Flow

- Cardiac Output (CO)
- Blood volume/central venous pressure (CVP)
- Systemic vascular resistance (SVR)

Shock

	Pulmonary- Capillary Wedge Pressure	Cardiac Output	SVR
Hypovolemic	\	\	↑
Obstructive	↑ or ↓	\	↑
Cardiogenic	↑	\	↑
Distributive	↓	↑	\

Hypovolemic shock

- Cool, clammy, mottled extremities
- Tachycardia, tachypnea
- Poor capillary refill
- Decreased pulses
- Flat neck veins
- Anxiety/obtundation
- Hypotension
- Oliguria

Obstructive shock

- Narrowed pulse pressure
- Diaphoresis
- Jugular vein distention
- Cool, clammy extremities
- Rales

Vasogenic

- Flushing
- Wide pulse pressure
- Sepsis
- Anaphylactic shock
- Neurogenic

> Initial

Goal of treatment is to optimize perfusion and oxygenation of vital organs

> ABC's

- Intubate if indicated
- Large bore IV lines
- Consider invasive monitoring in select circumstances to guide fluid resuscitation

- Hypovolemic Shock
 - Identify source of blood / fluid loss
 - Aggressive fluid resuscitation (SBP>100)
 - Use crystalloid first
 - Transfuse as needed
 - Operative management for hemorrhagic shock

- Cardiogenic Shock
 - Caution with fluid
 - Treat underlying cause- MI, tamponade, dysrhythmias
 - Inotropic support dopamine, dobutamine, phenylephrine

- Vasogenic Shock/Sepsis
- Aggressive crystalloids
- Ideal urine output >30cc/hr
- Early antibiotics
- Identify infectious etiology
- Inotropes as needed

- Anaphylactic Shock
 - Intubate for airway support
 - Histamine blockers
 - Corticosteroids
 - Nebulized albuterol
 - Epi 1:1000 SQ/IM
 - . Epi 1:10000 IV if severe or refractory

Key Points

- Patients can be in shock with a normal blood pressure
 - Shock reflects a degree of tissue hypoperfusion
- Pay close attention to and understand the relationship:
 - MAP = CO x SVR
 - O CO = HR x SV
- Sinus tachycardia is almost always a compensatory response
- Identify and treat the underlying cause not the HR

Thanks

- Darren Manthey, MD
- EM Clerkship Director
- Sanford School of Medicine
- Sanford Health Trauma 5